

CTA

The Cherenkov Telescope Array

(Stefan Funk for the CTA Consortium)

Gamma-ray astrophysics

Detection of γ-rays

- Put instrument outside of the atmosphere (Fermi-LAT)
 - Ideal for lower-energy (dN/dE~E^{-α})
- Use atmosphere as part of the detector
 - Access to high-energy gamma rays

Detection of γ-rays

Detection of γ-rays

Light pool radius
R ≈100-150 m
≈ typical telescope spacing

Light pool radius
R ≈100-150 m
≈ typical telescope spacing

Sweet spot for best triggering and reconstruction:

Most shower cores miss it!

Light pool radius
R ≈100-150 m
≈ typical telescope spacing

Sweet spot for best triggering and reconstruction:

Most shower cores miss it!

Light pool radius
R ≈100-150 m
≈ typical telescope spacing

Sweet spot for best triggering and reconstruction:

Most shower cores miss it!

Large detection area — More images per shower Lower trigger threshold

What one would like to have ...

What one can (hopefully) afford ...

What one can (hopefully) afford ...

The baseline ...

Recommended by relevant roadmaps

Report of the HEPAP Particle Astrophysics Scientific Assessment Group (PASAG)

23 October 2009

The US contribution

- Focus on the mid-sized telescopes
 - The sweet-spot of the technique
- Start from suggested contribution from Astro2010
 - Double the number of mid-sized telescopes over baseline array
 - "Enhanced" telescope design
 - Secondary mirror allows for very small optical PSF across the whole field of view

The US groups

Highly pixelized imaging of shower

- Compare e.g. US camera to HESS-II camera:
 - Number of pixels: times 4 (~11500 vs ~2900)
 - Field of view: ~700% (solid angle)
 - Linear Size: ~40%
 - Mass: ~10%
 - Power consumption: ~25%

Results in enhanced sensitivity

CTA Baseline (Prod-1): See K. Bernlohr et al. 2012, arXiv:1210.3503 w/ US Extension (Hybrid-1): See T. Jogler et al. 2012, arXiv: 1211.3181

NSF-MRI funding for prototype telescope

- Construct a prototype dual-mirror telescope (2012-2015)
 - Project Total Budget: \$4.88M
 - NSF contribution: \$3.64M
 - Cost sharing (13 US Universities & 2 National Labs): \$1.24M
- Main goals:
 - Detailed cost and performance demonstration
- The first practical step in the US towards CTA

Timelines

CTA Baseline (optimistic) planning

Design Phase up to 2010

Preparatory /
Pre-construction
Phase
2011-2014

Construction Phase late 2014-2019?

Operation Phase

NSF MRI and CTA-US timeline

2012-2013 SCT prototype design

2013-2014 SCT prototype construction

2014-2015 SCT prototype commissioning & operation

2016 CTA-US "CTA Extension" construction proposal

Sites: Candidates

Guaranteed high-energy astrophysics

γ rays (and neutrinos)

Cosmic ray protons (and electrons)

Opening up the Transient domain

Particle Dark Matter

CTA covers the high-mass WIMP space

CTA covers the high-mass WIMP space

Vanilla dark matter WIMPs covered by ~2020

Complementarity -SUSY scan (pMSSM)

Summary

- A brilliantly successful and still immensely promising field invented and developed in the US (Whipple, VERITAS, Fermi-LAT) starts to be led outside the US for the next-generation instruments
 - US can make a significant impact in Dark matter studies with CTA. In numbers: factor 4-9 reduction in observation time on any target through addition of US telescopes
- Ultimate dream: measure the WIMP distribution in our Galaxy and in the Universe